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19. Abstract 7

Abstract: In this paper, we consider a system of interacting diffusion

processes taking values in the dual of nuclear spaces:

n

dX n(t) = (a(tX nN) + - . b(n , .nct). x nc,)d,
' n i=l

+ (a((txnM)+1jt.nt.xn )d JI.,.
' n ""

We prove that under suitable conditions the system has a unique solution and

its empirical distributions will converge as n --+ - to the solution of the

corresponding McKean-Vlasov equation. An application to a neurophysiological

model is also given.
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§l. INTRODUCTION

The present paper is concerned with propagation of chaos problems for

systems with an infinite number of degrees of freedom such as strings or

spatially extended neurons. The investigation of the asymptotic behavior of

the voltage (membrane) potentials of large assemblages of interacting neurons

leads to precisely such problems and provided the immediate motivation for the

work. Another example to which the approach of the present paper could be

applied (we believe) is the Ginsburg-Landau model in hydrodynamics recently

studied by T. Funaki [4].

Sections 2 and 3 are of an introductory nature. Basic properties of duals

of nuclear spaces (denoted throughout by 0', the strong dual of a countably

Hilbertian nuclear space 0) are briefly discussed and the results of Kallianpur

et al. [8] on the existence and uniqueness of the solution to (the martingale

problem posed by) a '-valued stochastic differential equation (SDE) is

extended to a system of such equations. The principal results in which the

infinite dimensionality of our problem call for special arguments are derived

in Sections 3, 4. and 5.

In Theorem 4.1, the weak compactness of the sequence of empirical measures

, = n (.) is established and it is shown in Section 6 (Theorem

J=l X,,

6.1) that 7nn' the law of gn(w,-) converges weakly to the unique solution of the

McKean-Vlasov equation.

The infinite dimensional (nucelar space-valued) version of the

McKean-Vlasov SDE is introduced in Section 5. The existence and uniqueness of

solution of this equation is investigated in detail in Baldwin et al. [1]. In

view of the importance of this result for the propagation of chaos, a slightly

different proof (with a somewhat stronger conclusion) is given for the special
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choice of the interaction term for our problem. The main results on the

propagation of chaos are given in Theorems 6.2 and 6.3. The existence of a

unique solution to the martingale problem posed by the system (3.2.1) ard

Theorem 5.1 on the McKean-Valsov equation are the key steps that enable

Sznitman's technique for finite dimensional SDE's to be used for the nuclear

space valued case.

The application, alluded to above, to the voltage potentials oi

interacting, spatially extended neurons is considered in Section 7. For

reasons of space we have limited ourselves to the mathematics of the problem

and excluded any discussion of the neurophysiological implications.

In Section 8 we introduce the assumption that the initial measure of the

system (3.2.1) is go-chaotic and show that the results of the previous sections

hold under this more general condition. This is of importance in application

since it is more reasonable to assume (as in the case of the neurons) that the

random variables X(t)..... Xn(t) are exchangeable than that they are

identically distributed.

It is worth remarking that our results contain the finite dimensional

results as a particular case and their relationship with other available

results (e.g. Sznitman [16]) is also briefly commented upon.

An cutstanding problem, to which we hope to return in a later paper, is

that of proving a fluctuation or central limit theorem. The difficulties that

lie ahead are foreshadowed in a recent paper by Kallianpur and Mitoma [7] that

establishes such a result under restrictive conditions.

S2. PRELIMINARIES ON NUCLEAR SPACES AND V'-VALUED SDE's.

In this section we provide the basics on nuclear spaces and on stochastic

processes and integrals taking values in duals of nuclear spaces followed by

"" " ~m a a m a I i i HMEN
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the results of Kallianpur, Mitoma and Wolpert [8] on the existence and

uniqueness of solutions of SDE's.

2.1 Nuclear spaces

Let 0 be a real linear space whose topology is given by an increasing

sequence 11-11 . r=l,2.... of Hilbertian norms. Let 0 be the completion of 0r r

with respect to 1-11r . Then 0 is called a countably Hilbertian nuclear space

(CHNS) if the following two conditions are satisfied:

CO

(i) o = n o
r=l r

(ii) For each r, there exists an m>r such that the canonical embedding 'mZC Or

is Hi lbert-Schmidt.

Let 0' denote the strong dual of 0 whose topology is given by the

following family of semi-norms:

[fIB = sup If(x)I where B C 0 is a bounded set in 0.
xEB

It is well known that 0' = U r where - is the dual of @ . Besides, the
rl-r -r rr=l

strong topology on 0' coincides with the inductive limit topology induced by

the canonical embeddings 0 -rC 0. Let 1111 denote the norm in O-r" if j

denotes the canonical mapping of 'r onto its dual -r, then for u C 0-r and

Cr -r r-
cr .

u[4] = <U.Jr >_r = <J_r U,#>r

where < • > denotes the inner product in the appropriate space.

For any T>O. CT , denotes the space of all continuous functions from [O.T]

to '. If (1. a : a C A} is the set of semi-norms defining the strong topology

of *' then by defining Exm = sup IX I, xECT, , the space CT , is seen as a
a Ot T a' 0
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completely regular topological space under the projective limit topology of

{w.Sa: a E A'. C, denotes the space of all continuous functions from [0,a) to

v). CT is the Banach space with the uniform topol:y, consisting of all

continuous functions from [O.T] to 0_,.

2.2 4)-valued processes.

Let (Q,5.(5t)toP) be a stochastic basis satisfying the usual hypotheses.

Definition: An adapted 4)-valued stochastic process{Mt} 0 is called a

martingale with respect to (gt) if for each * C 4 , {M [*]} 0 is a real-valued

(gt) martingale. {Mt} is called an L -martingale if EMt [#]2<_ for all tO and

For a detailed discussion of V'-valued martingales and their properties we

refer the reader to [6] and [12].

Definition: A continuous 4)'-valued process {W ttO is called a Wiener process

with covariance Q, if the following conditions are satisfied:

(i) W0-O a.s.

(ii) {W t[0]) is a one-dimensional Wiener process with variance parameter

Q(0,0), where Q(-,-) is a continuous positive definite symmetric bilinear form

on 4.

A result of Mitoma [13] implies that any 0'-valued Wiener process W has

paths that lie in the Banach space C for some q<0, and which are continuous
-q

in the 4) -topology P-a.s. The choice of q depends only on the covariance form
-q

Q. Let r q be a fixed integer. An important property of the quadratic form

Q is that it admits a unique continuous extension to a nuclear form on Pr andr

QOq = (OIQ P)~ = (Q%4,Q%0 (2.2.1)
r- r r rr
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for a unique non-negative trace-class operator Qr on 0r The trace norm of Q

on 0 r (or, equivalently, of Q*) is given by

'I'r,- 'Q~h, h)r (2.2.2)

where {hr} is a CONS for 0r

2.3 Stochastic intexrals in (V

Let {Wt} be a '-valued Wiener process with covariance form Q(-,.-) and let

L(',') be the space of all continuous linear operators from 0' to '.

For each T>O and # E 0, let L2 denote the space of progressively

T ~
measurable processes H: IR~x[2 -. L(0.0) for which Ef; Q[HO.HO]ds < -, where

H* is the operator dual to H
S S

H t OsT s 'vle
Definition: The stochastic integral It := f HsdW s (0 s T) is a 0-valued

L 2-martingale with the quadratic variation process as <IH > [t,']=; QH [0'.]ds
s

where QH I#P = Q[H:..H>]H.*
5

There exists an eMO, depending on H and T such that I H E C a.s.. f

(h1} C 0 is any CONS in 0_

I * HdWs[3 I f t (H:.h )edWs[he] (2.3.1)
J=1 0 s j , s

where the right hand side is an L -convergent series of Ito integrals.

Besides,

H e Q (2.3.2)<IH>t [JO = -7 f; (Hs#'h,)e(HsP'h i)ds Q[hi h J1]232

i.j=l

2.4 '-valued SDE's.
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We give below the result of Kallianpur. Mitoma and Wolpert [8] on the

existence and uniqueness of solutions of stochastic differential equations.

For a probability measure go on V and a pair of functions

A: IR+x' --+0' and B: e+x' --* L(':V). consider the following SDE:

dXt = A(t.Xt)dt + B(t,Xt)dW] (2.4.1)

X0 = X(o) f
where X0 is a V-valued random variable with law of X0 given by A' , and W is a

0-valued Wiener process with covariance form Q.

Let 2(4') consist of all functions f: 0' --+1 with f(u) = f(u[0]) where

,2

f C I and 0 C (P. The operator L s is defined as follows: For each

f E T(0').

Lsf(u) = f'(u[O])A(s.u)[O]+ 1"(u[O])Q(B (su),B (s.u)O)

where B (su) : 0 --40 is the adjoint of B(su). i.e., for all v E ' and

0 E 0.

v[B*(su)o] = B(s.u)v[o].

Let = C, .t = Borel a-algebra of C ,, and 9 = V 9 and let

t := C0 ,-0' e the canonical process defined by ty = y(t) for all yEC0 ,.

If PEW(C T ), then 11 (A)=u(y E C : y E A), A E 8(0_

Definition: A solution to the martingale problem posed by (2.4.1) is a

probability measure p on CO. such that for any f E Vv). the real-valued

process - ft Lsf(xs)ds is a (ma..(?t).i) martingale withprcs t = ~t) - (o 0

-1
A.' 0  =0

The following conditions are imposed on the space 0. measure pO0 and the

coefficients A and B.
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Let {hm} be a CONS in m obtained by the Gram-Schmidt process applied to a
i m

countable dense set {if} in 0. For every j. we then have

n.
, = mkah + T7 (2.4.2)

k=l

where n (depending on m and j) j and 11n1i m = 0. Our assumption is the

following:

(A) For each m and p. (p~m). in (2.4.2) IIn I P 0.

Let T>O be fixed. Then, for each sufficiently large m>r where r is

introduced in (2.2.1), there exists a number 0>0 and an index p~m such that for

all s,t T,

(IC) Initial Condition: c : = f (l+11ull2 )[en(3+lull 2)]2 (du)<-

(CC) Coercivity Condition: For each u E mP .

2A(tu)[j__u] + IQB(tu)l-m._ m  0(1+ll2M)

where jm denotes the canonical map from $m to ' , with jm as its

inverse.

(LG) Linear Growth Condition: If u E - * then A(t,u) C 0 and-m' -p

IIA(tu) p (l+l1ull1 )
-p _

IQa(t,u) l-m,-m 0(1+lu"l_ m)

(JC) Joint Continuity Condition: A and B are each jointly continuous.

Further,

(i) B(su)(v) E * if u.v E 0 and-m -m

(ii) QB(s,u)(0,*) is continuous in u on V for each * E *.

The following condition will be needed in the proof of uniqueness.

(MC) Monotonicity Condition: For all uv E 1 -m (C 4 )

(A(t,u) - A(t,v), u-v)_p + QB(t,u)-B(tv) p-p Ou-v112p

- - , i ii l I I I -p
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We give below the main result of Kallianpur et al. [8].

Theorem 2.4.1. Assuming conditions (A), (IC), (CC). (LG) and (JC). there exists

a weak solution to the stochastic differential (2.4.1). Besides, it has the

pathwise uniqueness property if ((MC) is satisfied.

Next, we give a moment bound, followed by a tightness result both of which

are due to Baldwin et al [1].

Theorem 2.4.2. Let k~l and EIIXII c1 2 k. Then, under all the conditions

of Theorem 2.4.1,

E sup 11X 1l2 k  (2Ck + l)exp((136k2 - 4k)OT)-l0 t T s -m

Remark 2.4.1: EIIXt 112k (2Ck+l)e k(k-l)et- 1 for each Ot T.

Theorem 2.4.3: Assume that the coefficients associated with the equations

n X0 + J An(sXn)ds + fBn(s,Xn)dWn

and

X t = X0 + fJA(s,Xs)ds + f6B(S,Xs)dWs

satisfy the conditions:

1) Conditions (IC), (CC), (LG), (JC) and (MC) hold as stated where the

constants and indices are independent of n.

2) Xn D 0X

3) If Qn and Q denote the covariance forms of {Ws} and {Ws} respectively, then

Qn converges to Q.

4) For each sE[O,T] and # E 0, An(s,-)[0] converges continuously to A(s,.)[O].

5) For each sE[O,Tr] and * E -, (Bn(s.-))*O converges continuously to B*(s,-)'.

Then P.(xn) - I => P.X - 1 inC 0
-p
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Remark 2.4.2: If T>O iq fixed, the solution of SDE (2.4.1) namely X will have

paths in CT a.s. where p is the index that appears in the conditions.
-p

D
Remark 2.4.3. Throughout the paper, the notation - is used to denote

convergence in distribution of random variables whereas the notation => is used

to denote weak convergence of measures. Thus, X D-+ X is equivalent ton

P-(X) - => P-X 1 , where PX 1 and PX 1 denote the law of X and X respectively.n n n

We adhere to this notation even when the random variables are measure-valued.

3. SYSTEMS OF 0.-VALUED SDE's

The aim of this section is to extend the results of the previous section

to a system of stochastic differential equations which is done by first

introducing the Cartesian product of nuclear spaces.

3.1 Cartesian product of nuclear spaces.

Let 0 denote the nuclear space introduced in Section 2. Consider the

linear space OxO with coordinatewise linear operations. Let

2 2 ~ 211(01X02)11r = 1"ll1r + ll#2llr for r l. (3.1.1)

An increasing sequence of Hilbertian norms is thus defined on fxO which

preserves nuclearity of OxO. To see this, let 0 be the completion of OxO inrxr

the product r-norm given by (3.1.1) for all r>l. Clearly, rxr r r and

oxo = n (Prxor). Given n)O. if m>n such that the canonical injection
r l

i: 0 C 0 is Hilbert-Schmidt, then the injection (OxO) C (fxO)n is also

Hilbert-Schmidt.

Let (OxO)' denote the strong dual of OxO so that (Oxf)' = U (Pr xr). If
r~l

e E (0rXOr)', we can uniquely determine two linear functionals tI and t2 in 0-r

such that
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e( 1#)= el(Oi) + e2(#2) for all #*1 102 e (3.1.2)

Likewise, given e 1and e in 0-r. there exists a unique e in (0 r x4r ) such that

(3.1.2) is satisfied. In short, there exists an isomorphism between (0 rxOr d'

and 0 xO which is written as (0x0 XO )'~ ~ 4 -rX'1

The above isomorphism is not just algebraic but topological as well, if

0 -rX 0 -ris equipped with the product -r norm. i.e.

II(u 1xu)11= INu 112I~ + 11u12 . We thus get

('tX%) =U (0 rO ) r U (0- rX 0-) (3-1.3)
r~l r r1 r -

Besides, U (0_ X 0'- ) x V X set-theoretically. To see the topological
r 1 -

equivalence, consider a neighbourhood of zero in Vx0' i.e. Let A Iand A2b

two bounded sets in 0. and 0)0 be given. Consider the set

A = ((e1,P 2): sup le 1(#)1 < E. su Is '2(4) < e) g ".x 0.'

For any fixed r~l. 3 a r-* A ( 11 i=1.2 so that

A 3 ((R1 .P2) -1 l 1  0 ii-2"

Thus

2 2 < 62a2(314
( 1 1,e2 ): "l"l-r + -l Ir / 1)(314

On the other hand,

A C {(e 11e 2): sup le 1(01)+e2(#2)1 < 2e} (3.1.5)

2)E AxA

and A Ix A2is a bounded set in 0 x 0. (3.1.4) and (3.1.5) give us the

topological equivalence of U (r OO ) and O'xOb. Therefore (3.1.3) implies
r 1

that
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(0 x -) = U (-0 x 'r' ) U ( @ r) = O'x 0'. (3.1.6)
r l r l

Equation (3.1.6) carries over for any finite number of Cartesian products.

3.2 System of SDE's

Let Xn be V'-valued processes, 1jQn governed by the SDE

dX (t) = (a(t,Xt)) - b(tX (t),X(t)))dt
n =1

n

((t,X;(t)) + n c(t,X n(t),Xj(t)))dW (3.2.1)
ni=1

and Xn(O) 1 jn being iid V'-valued r.v.'s with law of x n.(0) given by the

probability measure WiO . {Wj}, 1 jin, are independent copies of a Brownian

motion with Q as the covariance form. Besides,

+
a: R xc -- '

b: I+ x 0 xO' 0 -0'
+

a: x 0' -- + L(O': 0')

c: Ix ' x O' -- L(': ')

Let (X'(t, .n . Xn(t)) C O'x...x 0' be a solution of (3.2.1). Then the

isomorphism given by (3.1.6) between O'x... x 0' and (0 x... x 0)' we can write

the system of SDE's (3.2.1) as follows:

dXt = (a(tXt) + (tXt))dt + (a(t,Xt) + c(t.Xt))dW t  (3.2.2)

where initial value Xn is a (Ox.. .x )'-valued r.v. such that X0 is isomorphic
to (X;(O).....Xn(O)) n (x...x'), and W t is the (0 x...x f)'-valued Wiener

process described below.
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n

By the independence of {Wl n

n
= t I

j=l

n
Besides, {Xt} is a (0 x...x -0)'-valued process. The coefficients appearing in

(3.2.2) are given as follows:

a: + x (0 x...x )- (0 x...x )'

g *x (0 x ... × x) (0 x ... x )

a: 1R+ x (0 x...x L')' -. (( x...x 0)': (0 x...x )')

c: e+ x (0 x ... x ---1 L ((4 x... x 0)': (0 x ... x 4P))

For V = (V ..... n) and =(*1.....*) C # x...x 0 and u (u I ..... u) and

v (v1 ....v) x...x 0)', we have

n

a(t.u)[v] = I a(t,u )I[e]
~ ~- j=1

n n

I I I b(t.uj,u i)[ViP]
j=l i=1

n
a(tu)(v) [V] = _ a(tIu )(V )V I

- - - J=l

1n n

-(t.u)(v)] c(tu ui)(v)[(~u() n] j J=1 i=1

so that

.n
fo;(s'u)dWs ] = a(sjul)dWIV

1 n n
(s.U)dW I . f; c(s]u j.ui)dWj[ pj

(suds~ = n j=l i=1

3.3 Existence and uniqueness of solutions.
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Under the conditions given below, there exists a weak solution Xn of

(3.2.2). Such a solution will also be shown to be pathwise unique and thus

ensures a unique strong solution {X n} C (0 x ... x0)' to the equation (3.2.2)

(see [5]).

Analogous to (3.1.6). the isomorphism C (Ox...x ) Z C , x... xC ,. is easily
T

established. Towards this, fix T>O and consider yEC( x.. so that for

each Ot T, y(t) E ( x. ..x 0)'. By using (3.1.6). y(t) is isomorphic to, say,

(yl(t) .yn(t)) E O'x...x 0' for 0 t T and so, lim y(t) = Y(to) is
t-*t0

equivalent to lim Yk(t)=Yk(tO) for each lk~n. Let {l'la: aCA} be the set of
t-*t0

semi-norms defining the strong topology of V' Set ykma = sup lyk(t)Ia for
O~t<T

T 2 n
ykC Ce.. 1 k n and a C A. Define EyE = I Myk IN for each a E A. By

k=l

replacingll*II by m.m in (3.1.4), the arguments used in deriving (3.1.6) holdr a
in the present context as well and thus CT is isomorphic to

C(OX .. XO s smopict

T x...x C . C,,×...xC , and C(0 x...x 0), equipped with the projective limit

T T T T.
topologies of {CTX ... x C,: Te and . T C IN) respectively. are

{C0 ,x.. . T€ epciey r

therefore isomorphic.

Let Xn(t). 1j~n and t>0, be such that for each V 1........C

4n x..n.x 0, Xn( ) ) rX Then Xn(-) EC C, for 1 j n and solve (3.2.1).
t j L J 4J

The conditions for the existence and uniqueness of solutions of SDE (3.2.2) are

as follows: Conditions (A) and (IC) of Section 2 are assumed to hold. It is

easy to note that condition (A) on 0 implies that on 0 x... x 0. Likewise

condition (IC) of Section 2 implies

(0(1+l.ullm )[fn(3+llul _m) 1 1o(du) <
( x...x X)
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where uE(Ox... .xf)' and p = 9(0-). We will call (A) and (IC) as (SA) and (SIC)

where S stands for system of stochastic differential equations. The

coefficients a~b.c and a are assumed to satisfy the following conditions:

For any T>0. 3 1 r such that for each m Lr. 3 a number 6 and an index p

(note that 6 and p depend on m) such that:

(SC) For u,v C ~m 0, and 0 t T.

2a(t~u)[J~mu] + 2b(t~u.v)[J~mu]+

K00f+1ll 2 +(r~u~v)lvI 2
IQo(t u)+c(t u v) I m - Mm

where

0 f b(t~u.v) =c(t.u.v) = 0

13(t,u~v) = {- :hris
(SLG) Let u~vE C .~mand 0 Kt KT. Then a(t,u) CO~ and b(t~u~v) C _P

Besides,

I1a(t~u)II 2 6 (1+I1uII)2
_p -

11bt~~v112 K 01u2 +1V 2

K~~uvI 0 (1+u 2+M

cQ~ uv K____ 1+n1uvl2 +11v11 2 )
IQ U'vI ___ 6 -M -M

(SJC) a~b~c and a are jointly continuous functions. Further,

(i) For u~v,w E '0'_m

ar(t~u)(w) C _

c(t.u'v)(w) C0-

(i) a(t.u) (*. ) is continuous in u on 0' and Q c(t'u'v)' 00)i

continuous in u on 0' for each E 0 .

The following condition is needed to prove the uniqueness of solutions.

(SMC) For u1 .v1 .u 2 v 2 E 0__ ( C 0 )
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(a(t~ul)-a(t~v1 ),u l-v1 )- + 'C(t)(tv)l -I 0 el uu-v 1 1 2

and

(b(t~u1 ,u2) -b(t,v1 .v2) .ul-v,)_ + IQ~~ul .u-c(t~v1 .v2) L--p

0 {Ilu -v 11 2+ Ifi -V If12}
1l1-p 2 2 -p

It is easily verified that the above conditions will imply (OX). (LG).

(JO) and (MC) for the coefficients a,!bc and a for equations (3.2.2). so that

by Theorem 2.4.1 we get existence and uniqueness of solutions for the SDE

(3.2.2). The moment bound given in Theorem 2.4.2 becomes

E~ su -m n tII2 (2Ck+l)exp((136k2-4k)OT)-l (3.3.1)

whee . =EtXn(O)IIm < - and is independent of n. In fact, the following

bound can also be derived by an obvious modification of the proof of (3.3.1):

Under the Condition (IC)

E tsup IIX (s)-X n(t)II 2  c6~ (3.3.2)

O~t,s T

where c is a constant independent of n. Tu see this, note that if T t > s >

0 with t-s 8, then

X i (t) = X i (s) + ft{((a(s).X i (s)) + I b(s X i(s).X,(s))}ds
i-=1

t n n
+ f {a(s,X (s)) + I c(s.X.(s) .X(s))}dW.

s 1l I 1 5

We get (3.3.2) by the familiar route namely, via. Doob's inequality, Jensen's

Inequality wherein the condition (SLG) is used crucially.

Note: O(T(- will be kept fixed till the last paragraph in Section 6. Thus X n
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lj n, the solution of 3.2.1 will each have paths in CT a.s. where p is the
-P

index that appears in the conditions.

§4. WEAK COMPACTNESS OF EMPIRICAL MEASURES.

Let Xn denote the solution of the SDE (3.2.2) so that

n. n TTn
x._- ...... .. where X.(.). l<in solve the SDE's-p -p

(3.2.1).

T T T
Let 5(cT ) be the Borel a-algebra of C T  For w E 0, BE-(C T ), define

-p -p -p

the empirical measure

n(n'B = n n (B)_ (4.1)j-- x i(..'C)

For any k 1. let Y(CT k ) be the space of all probability measures on

C0 -k equipped with the topology of weak convergence of measures. Likewise

W(%T,) will be the space of all probability measures equipped with the topology

of weak convergence of measures. Note that the canonical injection

T T TrCi:r(C T ) C vtCT ) is continuous if k < e. To see this, let X n C(% T ) such-k -e 'n-

that X n => X in r(C T  ). Therefore, for all f Cb(CT ), f(y)(dy) -
-k -k CT

T f(y)X(dy) as n-+. If g E %(T let j: 0_kC  O-_ be the continuousC T k-
C _

Tcanonical injection of -k into 0-e so that the composition g-j C Cb(C T ).
-k

Besides. 5 (g-j)(y)X n(dy)= f g(y)Xn(dy) and f (g-j)(y)X(dy)=
CTT_k _e CTk

T
f g(y)X(dy), so that X => X in w(C T ) as n - .

CT n
-eR
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An is a random measure with An(w,,) C w(C T  ) for each A E Q and n 2 1.
-p

T
Let vn(B) = FUn(B) for all B C !(CT  ). Let n :1 n) , the law of pni i.e.,

-p

the probability measure on v(C ) induced by the random measure wn. Thus,
-p

T
Tn Eir(ir(C _-p

Theorem 4.1: Under the conditions (SIC). (SA), (SCX), (SLG), (SJC) and (SMC),

we have

(a) the sequence {n} is tight in v(C: ) for some q p.
-q

(b) the sequence {nn} is weakly compact in -wTr( T ).

T
Proof: (a) For any set B E g(CT .

(Bc) = (Bc) n 2 P(xn E BC) - P(X1EB) since X.. l<j<n are identically

distributed random variables. Therefore, the tightness of {vn} in (cT, is

equivalent to the tightness of {X1 } 1 . i.e., of the probability measures {pn}

Tnon i(C) where = law of

By a result of Mitoma [14], the tightness of {P) is equivalent to the

n -1 T T T
tightness of {P 7 r,} on r(C) for each *C 0. where r: C. --+ C with

r (u) = u[#]. The tightness of {Pnl 1 } follows by verifying the following two

conditions:

Ci) Given e > O, B a > 0 such that

sup pn(y . cT,: sup lYt[f]l > a) < E
n O t T

(ii) Given e > 0 and p > 0. 3 6 > 0 such that

sup pn(y C C.: sup ly[0l -ys[#]I - 6) P p.
n It-sl<6
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n 2
Condition (i) is verified by noting that E sup 1lXl(t)i12 is finite and

Ot T

independent of n. To verify (ii), note that

Pn(y: sup lyt[]-ys[0] , e) , pn(y: sup Iyt-Y II -pllp > 6)
It-sI<6 it-sl<6 - p

II l 2

2 E sup IIXn(t) - X n (s)II 2  p

It-sl<6 110112

By the moment bound given in (3.3.2) we have that

E sup IIXl(t) - XI(s)II2p  c6!
It-sj<6

so that a 6 as desired does indeed exist once we are given e,p and *.

The tightness of {Vn} is thus established on the space ir(CT,). For any

* E. and any given e > 0.

P( sup lXn(t)[,]l > 6) P( sup IIXN(t)II- ll0ll > 6)

O t T O t T

--2 E sup IIXn(t)1 2

2 OutT J -m

!& (2CI+I)e 1320T p2 2

if 11 1m l 2  Pe plThus by Mitoma ([14]; Remark (R.1)), {v are2C 1 +1 )e
13 20T ' n

uniformly m-continuous and hence, are uniformly p-continuous as well.

Therefore, there exists an index q p such that {v n) is tight in CT

(b) For the second part of the theorem, let us look upon pn (w.-) as

• • m | |n
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TTTW(%~ )-valued random variables. Then E n iECr( ) and iln w(ir(C,) for all_q n-q -q

n 1.

Note that vn(B) = ( XCB)in(dN) V B E (C (4.2)
T -qir(C _ )
-q

Using part (a) of the theorem, for each J 1, there exists a compact set K. in

such that v (K C) = X (K )d~n(N) _ e/j3 where e > 0 is given. Let-q

1.K={: CK) 1- V J} where K s can. WLOG, be taken to be increasing sets.

K C r(C, ) is compact since closed tight subsets of probability measures on a
-q

complete separable metric space (in our case, on CT ) are compact (see Chapter
-q

II, Theorem 6.7 in [15]).

'qn(Kc) P(jin E Kc) 2 77 n(X:X(K.) < 1 - -

J=1 n

= . rn(X:X(K) )
J=l n

X S (K c) d n

J=1 (1/i))

W 2.

J=l 2

Thus tightness of {T} in r(C 0  )) ensues.
-q

Note that W(C ) equipped with the topology of weak convergence is a
-q

complete separable metric space (see Ch. II, Theorems 6.2 and 6.5 in [15]).

Tight subsets of probability measures on a complete separable metric space are

relatively compact. The proof is thus complete.
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Remark 4.1. Let (-a n be the subsequence given by the above theorem so that

17 => (say). Let pi denote the ir(C T )-valued random variable whose law is
n k -Pq

given by n~. Thus n n => 77 is equivalent to saying that li k p +I.

Remark 4.2. By a well-known theorem of Skorohod, there exists a probability

space on which are defined Yr(CO- )-valued random variables, say {Z n} and Z

with law of Z n= 77 and law of Z = ni such that Z n i Z a.s.. Using this

representation and applying Fatou's lemm, we get

E sup fIl Jy11 2Z(dy) = f {sup f Ily 11 2 Mdy)ri(dX)

0 s 1'C T s-q W T OsTCT s -q

40-q 0-q (P-q

IiDmE sup fI ly 12 Z (dy)
k-4- O~s T cT -q nk

-q

=lim £ sup f Ily 11 2 X(dy)}n (dX)
k-m 1T(CT T 0 sr T

1 knk 2
lim E sup -7 I X (s 1-
k-m O~s T nk J=l '

S(2C I+l)exp(1320T) (4.3)

by using (3.3.1). The inequality (4.3) holds with C Iand 8 remaining the same

if T is replaced by any t on both sides of the inequality (4.3), 0 t T.

Remark 4.3: In case p is a degenerate random variable, and Y is a CP- -valued

random variable with I(Y) = p., then Remark (4.2) implies that for each O~t T,

E sup 11YI 112 (2C +1)exp(1320t). (4.4)
O<s~t s -q
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§5. THE McKEAN-VLASOV EQUATION

Let {Y t: O~t T} be a V'-valued stochastic process that solves the

following SDE known as the Global McKean-Vlasov equation: For 0 ( t < T.

yt =Y 0 + J A(s.Ys,(Y))ds + f; B(sYsV(Y))dW (5.1)

where

A(s.u,X): [O,T] x ' x r(C,) - 0'

TB(s~uX): [0,T] x 0' x w(% ,) L(': V')

and W is a i'-valued Wiener process. Y(Y) denotes the law of Y. and Y is a

V-valued random variable.

The local McKean-Vlasov equation is of the form:

t A(,std 52

Yt = Y0 + f 0 A(sO Y . (Y))ds + f; B(S,Ys,(Ys))dWs  (5.2)

for Ogt T.

By uniqueness of solutions of the SDE (5.1). we mean the following:

For each X C T(C,) let, for O~t T,

= + ft A(s,Y ,X)ds + ft B(s.Y XX)dW. (5.3)Yt = YO 0 sO O s "

Suppose there are X1 and X2 E T(C) such that X, = (Y ) and = (y ).

Then X I=2 .

Existence and uniqueness of solutions of equation (5.1) in full generality

will appear in Baldwin et al. [1]. Here, we content ourselves with the

T
following choice of A and B: For each X E r((C,), let

A(s,u.X) = a(s,u) + b(s,u,X)

where b(su,X) = f b(s~u,ys)X(dy) and

B(s,u,X) = u(su) + c(s.uX) (5.5)
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where c(s.u.),) = f c(s~u~y s)X(dy). Besides, we assume that there exists a

C 0

sufficiently large number M(m), possibly depending on m, where m is as in

subsection 3.3. such that for each u,v E ) and O~s T.I b(u.v) if I1u-vII- M(m)
b(s.u.v) s (5.6)

b s(u,v) otherwise

where b s(u~v) and b s(u.v) are functions of u,v with 1ib S(u.v)II__ C(m) for each

s E [0,T]. Likewise

c s (U'v)if I1u-vll- M(m)
-m'') (5.7)

cc~uv = { 'v otherwise.

with c s(u.v) and c s(u,v) are functions of u~v with IQ^. I- -m C(m) for
c (u'v)

each s E [0,T].

With b and c as above we first note that b and c exist and are finite. To

see this, consider

b(s,u.X) =f b(s~u~v )2(v) =f b(--s~u~v)dLir Mv.

0')

Since u 6 4)'. there exists an index k such that u C 4)k and such a k can be

chosen to be sufficiently large.

Using such an index k in the place of m in our conditions given in

subsection (3.3) as well as (5.6) and (5.7). we get for each p E 4) that

I9(s~uX)[3p]I f Ib(s,u,v)[,w]ldXvir'(v)
0').

=fIb(s~u~v)[qp]Id~N- 1 (v)
A
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+ f Ib(su.v)gT ]dx 1 (v)

AC

where A = {v: ilu-vlk M(k)). Continuing,

f ll 0llp(l+ llu u k+Ilv ll dk) ,Lr s (v) + C(k)
A

by using (SLG) with pk k as the index that corresponds to k. Continuing,

_hpllpk (M4(k) + 1 + 211ull_k + C(k) <

Likewise one can establish the finiteness of c(s,u X) by showing that

IQ... 1~_-k < - whenever u E O-k-
c(s,u,X)

Such a choice of b and c makes physical sense in it that a pair of

particles far apart interact boundedly. This choice includes in particular the

case where b(s,uv) and c(s,u,v) are both bounded in the sense that

Ilb(s.u,v)UI_ ( C

I Q^ IMM-m - c

c s(u'v)

for all O~sT, u E 0' and v E 0'. We assume that the functions a,b,c and a

satisfy the conditions (SOC), (SLG). (SJC) and (SMC). It is then a routine

matter to check that A and B, as defined above, satisfy (CC). (LG), (J) and

(MC) as listed in Section 2 with the same indices and with constants

independent of the measures X E 7r(C T ,). We need and hence introduce the

following additional condition:

T
(SJC)* (i) For each X C r(CT.). b(s,u.X) and c(s,uX) are jointly continuous

in s and u. Q (*,) is continuous in u on 4' for each # E 0 and
c(s u.X)

s E [O,T].
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(ii) For each E , u E 0-M and s C [OT], b(s,u.,n )[0] converges

continuously to b(su,X)[] and c(SUN n)# converges continuously to

T
c (s,u,)4 as Xn => X in w(C,).

Theorem 5.1: Consider the SDE (5.3) with A and B specified by equations (5.4)

to (5.7). Assume conditions (SA). (SIC), (SOC). (SLG). (SJC), (SMC) and (SJC)'

and that EllY 11 where C is a positive constant. Then,
0 -ni

(i) the McKean-Vlasov equation defined by the equation (5.3) admits a solution.

The solution Y lies in C a.s.
-p

(ii) The solution is unique if the following additional condition holds

(MCi): For all uv C O-m, and C V,2 r , and Os T,

(b(s.ul) - b(s.v, '2),u-v> + IIQ~ II-P c(s~ur l)-c~s,v,C2 ) -PP

Cr{K(Cl. 2)"u-vp + Ilu-v112 } (5.8)

where CT is a constant and

[ inf " " lUl-u2 11 Xs(duldu2) if l A 2

K S(C1I2 XECl 1, 2 ) 4.0.

0 if r' = C2

T T
Here, A(C1 ,C2 ) = the set of all probability measures X on C , x C , with the

prescribed marginals C, and Besides, Xt = Xr- 1

C2- t

Proof: A complete and detailed proof of this result will appear in Baldwin, et

al. [1]. Here we will briefly outline the basic ideas of their proof with

modifications to suit our needs.

x T TLet A = ({I(Y ): r(C,)}. Then A is a tight subset of r(C ,) by

TTheorem (2.4.3). Define the map #.pw(C .) --+ A by P(p) = V(Y'). Again by

theorem (2.4.3). 4, is sequentially continuous.
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Note that A is a subset of 7r(CT  ). By using Theorem (2.4.2) for k=l and
-p

a result of Mitoma [14]. we know that there exists an index p p such that A

is tight as a subset of w(C T J. Let cR(coA) denote the closure of the convex
-p

hull of A in (CT _ ). Then ce(coA) is tight in r(CT _ ) and is therefore
-p 

-p
T T T

compact in (C _ ), The canonical inclusion J:(C _ ) C W(C ,) is
-p -p

continuous as can be seen from the proof of part (c) of Theorem 6.3.

T
Therefore. ce(coA) can be viewed as a subset of w(CT .) and is a compact and

tight subset of YrCT ,

T
It can be shown that the topology of weak convergence in lr(C,) when

relativized to a compact tight subset of r(C,.) is metrizable so that cR(coA)

is a Polish space under this topology.

Let : ce(coA) --* ce(coA) be the restriction of P to ce(coA).

ce(coA) is metrizable and so sequential continuity of ;T is equivalent to

continuity of ;T. An application of the Schauder-Tychonoff fixed point theorem

(see [3]) gives us the existence of the McKean-Vlasov equation. If X °

00

such that X 0o--(Y o), then, for this choice of measure Xo0 , the coefficients A

and B satisfy the conditions of existence and uniqueness of solutions as listed
in Section 2. Therefore Y C . since A C T{C T

-p -p

For part (ii) of the theorem, let X1 and X2 be two measures in w(C,) such

that X1(y and X2= 2 ). Then Theorem 2.4.2 implies that

E sup Iiy' 112  < - since E sup II 21p 2  < Likewise, E sup 11 2 p < 0.
O~t T -P Os T O~t_<T

x1 h22

Therefore if Y = Yt -Y I E sup IIY U2  < . Applying the It6 lemma toOsTt -p
t t t O~s T t-

1lYtll peXp{-2Crt ) where Cr = C 1(XI, X2) is the constant that appears in (5.8),

and then using the condition in part (ii) of this theorem, we get that
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EIIY 2 Hexp(- 2CTt) Ef Ks( 1 X 2)Ysll_pCre ds.

Since Ksl(X.X2) ElIIY p, the above inequality yields

EIIY e EIIY s12 ds.

Gronwall's lemma now yields EIIY 2Up = 0 for all t C [O,T]. Since Yt is sample

continuous, sup IIy' -Yt IIp = 0 a.s.
O~t T

Remark 5.1: Since the conditions of Theorem 5.1 hold for all sufficiently

large m with p being the index determined by each such m, the conclusion of the

theorem holds in particular when m is replaced by a larger index. Therefore,

the measure X obtained in Theorem 5.1 is the unique solution of theo

McKean-Vlasov equation defined by equation (5.3) even among the measures in the

larger space viz. r(CT  ) for any k p. This fact will be used in Section 6-k

for the particular choice of k=q where q is the index that appears in Theorem

4.1.

§6. PROPAGATION OF CHAOS

Let P denote the unique probability measure on (CT that solves the
-q

martingale problem posed by the system of equations (3.2.1) subject to the

conditions listed in subsection 3.3. and conditions (SJC)' and (MOr). Besides,

we assume that b and c satisfy conditions (5.6) and (5.7). T n E i(r(C T  )) is
-q

given by

T1n(B) = P( : n I I B) V BE C (!C ))

i=l yi -q

where yfn denotes a generic point in (CT so that yn = (Y;'...y) where
0 -q
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each component belongs to CT The method employed by Sznitman [12] is used
-q

in proving the following theorem.

Theorem 6.1: Under the conditions specified in Theorem 5.1, let X C r(CT  ) be
-q

the unique probability measure that solves the McKean-Vlasov equation (5.3).

Then, the subsequence {7 k} obtained by Theorem 4.1 is such that n k => 6 "o

where 6 refers to the Dirac 6 measure provided that there exists a > 0 such

that EllXl(O)ll_ C, where C is independent of n.

Proof: Let f C !%(0() (see subsection 2.4) so that f(u) = ?(u[Vp]) for some

p C and f C GI().

Lij(f, yn,) = -f(y (s)[p]){a(s.yn s))[p] + b(s,yn'(s),y(s))[f]}

n1n n

+ 2"{y i() V

n (a(s.y (s)) + c(s,y ss)y n )))*[V]
Il n

k=l c s yk

where n (y .... yn) C O x...xW. Let

L(f,y(s),sX) = f f'(y(s)[pJ)

-q

{a(s.y(s))[p] + b(s.y(s),z(s))[Vo]} + 1"-ys)"'D

Q((f (a(s.y(s)) + c(s,y(s).zl(s))dz(zl))*IV1),

-q
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(f (o(s.y(s)) + c(s,y(s),z2(s))d(z 2))'[P]J)1C\(z)

C _-q

By the conditions listed in subsection 3.3, the existence of a unique solution

to the martingale problem posed by (3.2.1) is guaranteed. We have called such

a solution as P . Therefore
n

n nl n
f(Y (t)13P)) - f(i (r)[ueii -r n I L i (fy~sd

is a P -martingale with O~r<t T. By the conditions listed in the statement ofn

Theorem 5.1, a unique solution of the McKean-Vlasov equation posed by (5.3)

exists and is denoted by X.0 Therefore the following is a X -martingale:

t0

f(y(t)[T]) - f((y(r)[p]) - frL(f,y(s),S, 0o)ds

where Q~r~t T. Consider the function F: w(C ) -IR defined by
-q

F(X) = f {f(y(t)[p]) - f(y(r)[p]) - r L(fy(s),s,X)ds} (6.1)

-q

gl(y(rl))---.gpCY(rp))dl (y)

where OfrI r2... pr t T and g ... gp are bounded functions from _ -- R.

Hence F(Xo)--O. Now we will show that f F2 (X)r(d2L) = 0 by direct

r(CC )
-q

evaluation. From this, it follows that the support of ii is contained in the

set of solutions to the L-martingale problem. Corresponding to each solution

of the L-martingale problem, we can construct a weak solution of the

McKean-Vlasov equation, by the method employed by Kallianpur et al. [8]. From

the previous section we know that the McKean-Vlasov equation has a unique
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strong solution namely Y . Therefore the set of solutions to the L-martingale

problem is the singleton set. )0}. From the fact that X 0 is the unique

solution to the martingale problem it will then follow that T=5)k
0

Claim: lir F2 (X)7n (d) = S F2 (X T(CL)

W(c T kV Tk"r (C, ) 7r(C, )
-q -q

Proof of Claim. Let X denote Xw . If X is in the support of )t recall that
5 nk

X s has support in 4-m for each O<s T. For each uv E ', qE Xk E r(CT  ) and
-q

O<s T, let for R > 0,

a R(s.u)[,p] = (-RVa(s.u)[3p])AR

b R(s.u)[p] = (-RVb(s.u.v))['p])AR

Rs.s(,o) = RAIh(s.u,Nk )(%.%O)

R R Rwhere h(s,u,Xs) = a(su) + c(s.U,Xs). Replace a.b and Q by a Rb and Q

respectively in the definition of F, and call the resulting function as FR

lir f 2(;X)_n (dX) = f F2 (X)71(dX)
k-40 TC nk WT)- ,- % ) i(CT  )

-q -q

since FR C C.(r(CT  )). The claim will be proved if we show that
-q

f (F2 (X) - F-2(X))Ti (dX)) and f (F2 (X) - F2-(X))71(dX) can both be madecoT R nckT R
Wk (C )% )

-q -q

arbitrarily small when R is sufficiently large.

Using Fubini's theorem and Jensen's inequality,

£ (F2Ce)-F-R(X))n (dX) 3(t-r)( max Igi 11)p

R nk1 i C
-q
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x St E [f (?(y[,p)a(s.y)[,p])2X (dy) (6.2)

r 11  y:Ia(s,y)[,p~t>R}

+ (f (y[,p])b(s.yx s)[,p])2X5 S(dy)
{y: Ib(s,A 5 )[,p)I>R}

It remains to show that each of the three terms on the right side of (6.2) can

be made arbitrarily sma.ll, uniformly in k, when R is large. Since the method

for each term is essentially the same, we shall consider only the third term.

~hsy.5 )(P) w 2 I Q HIII 2 3(1+41lyII 2 _+M2 (m) )+3C2 (m)]

by using (SLG) and equation (5.7). Thus

{y: Q(q, vp) > RI g (y: 11yI1 2 M> Rfkj

where k is a suitable positive constant and R is sufficiently large.

Therefore, the third term on the right side of (6.2) is

K1 f £ 2 (l+I1yII_ )N_(dy)ds

k-M

by using (SLG) again with K 1as a suitable constant independent of TC

Continuing:

K cE(l+1x4 n(s)II ) ]ds
r n k ~l -M lix nk ()12 > R/k)

K24+a ftL1k{E llx'ks14+a)4(4+a)Ilx n k ()12> /)a(a)d

by Wol1der's inequality.
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k 3 A/(4+a) -- + 0 as R --+ -,

wherein the last inequality uses Chebyshev's inequality and the moment bound

given by (3.3.1). Besides, k3 is a constant independent of nk. The fact that

f (F2(X) - F-(X))TI(d>) can be made small for large R. follows along the
TRT(C )

-q

same lines as above and its proof is hence omitted.

Continuation of the proof of the theorem: Using the above claim.

FT F() 2 i(dN) = ir m T )nk [,(n k-tkl{]k )

-q -q7ink ) I__- T y % nk y J =1 jnk p 2~ k y

- 7(y n r))[,p] - I rt n k i= i Jf'y n ' s)dS~gl(y n rl)) '"..gP{ynk( )] P (

Sr nk i~li'i li 1 p n k.

since 7k (B) = P (ynk: L k 6  E B) so that
nk k i=l nk

Yi

1t)1'P] - (y (r)[p]) - J r L =1i(f.n s)ds)

Yi

1 n ft 1 k L f nk )d)
f t(Mfryg ( - f(sd (r)[of]) f L eqa tod

CT )On n 2y rr }.g~yn~r}){{'Ynk s) =1 )

T k k
-q

g1(y k (r,))... .gp(y k (r 2) dP (y k (6.2)

Then, the right side of (6.2) is equal to

t I n k n k 2~ n k 2
f f ((gl(y (r)). .. .g (y (r p))) ((f'(y (s)[P])

-q
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(s) C(S.Yj)[v

nk i=k nk 1

(L(ka(syn(s)) + c(s~y. (s).y. (s))))*[p])dsdP (y k) = o(T)

by using the condition (SLC) and the bound given by (3.3.1). Thus

2 1 -1k rS F(X) I(cLX) = lim (o( ) + £" (n(y, (t)[0p])

-q -q

nn nk
- (y k(r)[p]) t 1r k  (f'y , s)ds)

(i(y n(t)[P]) - f(y nk(r)[p]) - t L ?C 142 ( .y' n s)ds)2 2 r ~nk i= ('

gi(ylnk (r, ) ) " .. gp(ylnk(rp ))gl ynk(rI ) ) ' .. gp(y k(rp)

dP (ynk)} 0

since the independence of the Wiener processes W and W2 implies that

<M 1(t), M2 (t)> = 0

where

13knn nk t sk dn
Mr(t) = f(yl t)[p]) _ f(yn (r)[ p]) -'r 1 z Li n(fkyr 1r1 nk i=1 i

which is a P -martingale.

Thus f F(N)2 ir(dX) = 0 for all F defined by (6.1) with f 2
T)

-q

p E IN and g, ... gp continuous and bounded mapping V -+ R, and

Or 1 . .. r tT. Since X0 is the unique member of ?r(CT  ) such that F(Xo) = 0.
p -q
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we get that 1 = 6 0 *

Remark 6.1. By Theorem 6.1. the possibly random measure p such that

D -).A E i(C ,.) has been shown to be a non-random measure and in fact, 4=X

Our result on propagation of chaos is presented in the next theorem.

Theorem 6.2. Under the conditions (SA), (SIC), (SGC), (SLG), (SJC), (SMC),

(SJC)' and (MOr) and with the coefficients b and c satisfying (5.6) and (5.7),

and sup EJXj(O)I_4 +a C for some a > 0 we get
n

(i) n > in T

n 0 O-q

t = t nn
(ii) if V t) where (w. =- I

i=l tw

and { (-). l i~n} solves the system (3.2.1), then n = >  for O(tT.

That is to say t - 1 in distribution and hence, in probability as well.

Proof.: We have shown in Theorem 6.1 that ink => 6O. In fact, for any

convergent subsequence (gj, of the sequence of empirical measures pn }, we

get from Theorem 6.1 that rnJ . => 6X0. Therefore, the whole sequence "n weakly

converges to 60 '

To prove (ii), note that for all real-valued continuous, bounded functions

T
f on w(C,,).

f (X)7n(dX) -- f(X6 (dX). (6.2)
T T 0
-q 

-q
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In particular, if f(X) = f g(y)dX(y) where for all y E C gy) = g(y)
T -q

-q

for t fixed in [OT]. and g a continuous bounded function from 4_ to IR. then

T
f(X) is indeed a real-valued, continuous, bounded function on r(C ).

t -~1

Therefore, (6.2) for this choice of f implies that tn => 6 7O1. Thus
t

An --iXOr as n -- in probability since the limit is non-random.

Theorem 6.3: (a) For each T>O, let the conditions (SA), (SIC), (SGC), (SLG),

(SJC) and (SMC) hold. Then the system of SDE's (3.2.1) admits a weak solution

that is pathwise unique. That is, (3.2.1) has a unique strong solution in

(CfO) O

(b) Assume the additional conditions (SJC)' and (MC') for each T>O. If b and c

are as specified by (5.6) and (5.7), the McKean-Vlasov equation posed by (5.3)

has a unique strong solution in Ct,.
n

(c) In view of (a) and (b) above, define (,*w) I I so that its
n i=lX n('.w)

law n n C r(r(C0 ,)) n 1. Let KO be the probability measure on C1. that solves

n 4+a
the McKean-Vlasov equation posed by (5.3). If sup EIIXI(O)IIm C for some

n

a > 0. then

=>6X in w(w(C ))

Proof: Part (a) follows by reading off the corresponding result in Kallianpur,

Mitoma and Wolpert I8].

(b) Let the conditions of Theorem 6.2 hold for each fixed T>O. Then, the

results in Section 5 and 6 hold in the interval [0,-). To see this, suppose

= X(YO ) solves the McKean-Vlasov equation in the interval [OTo], and

X1 = (Y) solves the McKean-Vlasov equation in the interval [O.T], where
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T1 >To, then, by the uniqueness of solutions to the McKean-Vlasov equation, we

get that the projection of X 1 on the interval [O,To] must coincide with X0.

Thus X 1 is an extension of X 0 in the above sense. Such an argument shows the

existence and uniqueness of solutions to the McKean-Vlasov equation (5.3) in

the interval [O,T] for any T>O.

Choose T = n, and the corresponding measures X nEr(C ,). Solve the

McKean-Vlasov equation (5.3). Then, the projective limit of {Xn} is a measure

X0 E w(C ,) that solves (5.3) for all t > 0.

To prove part (c), we make the following observations: For any positive

index k, i: C T C CT is continuous. In fact, the topology on CT, as given
O-k 0

in Sectioni 2 is equivalent to the weakest topology with respect to which the

above canonical inclusions are continuous. Therefore, we have

Claim: If r => P in w(w(CT )), then T > F in r(w(CT

Proof of the claim: First. note that the inclusion j: 7r(CT ) C ir(CT,) defined
-k

by j(X) = Xi- 1 is continuous. To see this, let {X} be a net in r(CT  ) such
a O-k

that X => X in r(CT ). Therefore
a -k

f fdX f. f cL\fV f ) T

CT a C T EC( -k

Let g E C (,). The composition g-i is then in C(C -k). Also

fT gda i - 1 = fT g-idXa for all a

Ca 0 
CTnk

and
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f gdX = f g-idR

so that

f T gd; a- f Tgd for all g E Cb(CT.).
CT a T

Therefore j is continuous.
Now let k be the inclusion from T((CT )) C w(w(CT,)). Continuity

-k

can be proved by following step by step the proof of continuity of j. The

claim is thus shown.

Now part (c) is shown by observing that Theorem 6.2 part (i) implies that

T
In => 6X in r(v(CT )

and hence

T'n => in r(T(CT

by the claim shown above.

T'n => 6 0  in T(wr(C.,)

T
since the inclusio' "n(r(C ,)) C w(i(C,)) is also continuous. Note that nn

and 6x0 are the projections of 7n and & 6 on C )). Thus 0 6 =  in

T

Remark 6.3: The unique strong solutions mentioned in parts (a) and (b) of the

above theorem are in general 0'-valued processes and cannot be guaranteed to

lie in a single Hilbert space OJ. This is so since the indices m and p vary

with T in the conditions.

§7. APPLICATION TO INTERACTING SYSTEMS OF NEURONS.

The random behavior of the voltage potential of a spatially distributed
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neuron has attracted considerable attention in neurophysiology and can be

modeled in the following set-up:

Let H be a separable Hilbert space and Tt be a strongly continuous

contraction semigroup on H with a densely defined, closed, negative-definite

generator A. In practice, H is usually taken to be L2 (1,W) where 1 is the

membrane of a neuron and p is a suitable measure on 1. If there exists r1 >0 so

that (I-A) is Hilbert-Schmidt, then there exists {Pj}j 1' a CONS for H such

0-2r 1

that - Ap = X pJ, j=l,2.... with 2 (l+) < . Let

= H: (I+Xj) 2r( 6 )H < - for any r>O}. Define on 0 a family of
J=l

2 2r 2increasing Hilbertian norms 11-11r with 
1 11 r = 2 (l+X)(,p)2 and letJ=l r

denote the completion of 0 w.r.t. 1111 r . Since 0 r+r C 4r is Hilbert-Schmidt,

it is easy to see that 0 is a nuclear space. The semigroup {Tt}t>0 can be

written as follows. For any f C 4

W
T t = I exp(-tX j)(,¢ j)Ofj i C .

j=l

The voltage potential is identified as the solution of the 0'-valued SDE.

dXt = A'Xtdt + dWt

where A' is the adjoint operator of A and W t is a 0'-Brownian motion with a

certain covariance function E(WtP)(Wj, P) = (t A s)Q(f,,P).

More generally, suppose A t generates a strongly continuous contraction

evolution operators T(s,t), s t on 0. Assume the following conditions on At

For any T and large enough m, there exists a p>m such that A'uIp < Klul m for

all t T, and uE', i.e., as continuous linear operators from 0' to V, {A }
m m p t t T

are uniformly bounded.



38

Then the following '-valued SDE modeling the voltage potential of a

neuron has a unique solution:

dXt =AtXdt + dWt

Moreover, the solution can be explicitly written as:

Xt = T'(Ot)f 0 + Wt + f; A;T;.tWs ds.

Here. T' denotes the adjoint operator of T Now, consider the system of

n-interacting neurons whose voltage potentials are governed by the following

SDE:

dXn)(t X )(t n n n
d (t= (AX n)(t) + n bt(Xi(t). X (t))dt + dWi(t). i=1,2.....n (7.1)

j=l

Xn(O) 0' where b : 'x' -- *' represents the interaction between neurons

and {Wi(t)}i=1 are independent copies of a 0'-valued Brownian motion.

We require that the interaction b t: VxO' --* 0' satisfy the conditions

(SC), (SLG). (SJC). (SMC). (SJC)' and (MCwr) as in Theorem 6.2.

The existence and uniqueness theorem in Section 3 thus guarantees that

system (7.1) has a unique solution. The propagation of chaos in Section 6

n
asserts that the empirical distribution n 2 E 6r(C ) converges in

i=l X(n) 0-q

probability to a deterministic probability measure X0 C i(CT ) which is the
-q

law of the solution of the McKean-Vlasov equation corresponding to (7.1):

dXt = (AtXt + bt[XtN t])dt + dW t .

where

b[X,Xt] = f b(x.y)dXt(y)
0*
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t

and X0 is the law of Xt.

Thus the asymptotic behavior of a large system of neurons through

mean-interactions becomes asymptct.cally independent with the distribution

governed by the McKean-Vlasov equation (7.2).

8. CHAOTIC SYSTEMS

8.1 Exchangeable systems.

Till now, the initial random variables Xn(O). Ijn have been assumed to

be i.i.d. random variables. We now relax this condition and assume that Xn.O),

ljQn are exchangeable random variables for each n2l. That is, the law of

X (O) ljQn, denoted by tL C rO,)n is a symmetric probability measure on
Onn

We call the symmetric measures w0 go-chaotic if the following condition

holds: For every integer k>l and fl .... f k C Cb(C').

k
lim ( On f l(ul ) ... fk{Uk)djo6u ) = 11 f fi(u)di0 (ui) (8.1)

n--)w(0')i=1 0

where u =(uI, ... un) I (0) n and w0 is a probability measure on 0'. We

assume that the measures A are wo-chaotic.

In the context of the neuorphysiological model described in section 7. the

assumption of exchangeability of the law of (XI(O),....X n (o)) for each n~l is

equivalent to saying that the particular order in which the neuronal membranes

are taken, is immaterial. This is so since the random variables

Xl(t).....Xn(t) for each t2O and nkl turn out to be exchangeable random

variables. The pO-chaoticity assumption is needed in showing the propagation

of chaos result. To see this, consider the simplest case where the drift and

diffusion coefficients are identically zero so that (8.1) itself becomes the

propagation of chaos statement.
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The results of the previous sections hold for the exchangeable model as

well if we assume gO-chaoticity and that EIiX (0) 4+  C where C is a constant

independent of n. and m is the index that appears in the conditions listed in

subsection 3.3.

8.2 Finite-dimenslonal systems

By setting n -= R with llxll = 2x for each n l, 0 = Id = n o is seen
i=l n~l

to be a nuclear space with its strong dual 0' being isomorphic to R . In this

case, all the norms II-I1k' -0 < k < w are one and the same, namely, the

Euclidean norm on d denoted by 11-11. Therefore, the indices m,p,q etc. in our

conditions can and will be taken to be 1. The canonical maps jm will not

appear in the conditions in this case. Besides, expressions such as

IQ atu)I-m,-m will simply read as trace(aoa(t.u)). Also, the condition (SA)

is trivially seen to hold for the choice of 0 = R d. The propagation of chaos

result for the finite-dimensional exchangeable system is given in the next

theorem:

Theorem 8.2.1. For each T > 0, let the conditions (SIC), (SCC), (SLG), (SJC)

and (SMC) hold. Let Xn(O) lj~n be exchangeable random variables and let

n = law of(
ngoof XO)..... n(0O)) be go-chaotic. Then,

a) The system of SDE's (3.2.1) has a unique strong solution in (C d) .

b) In addition, assume (SJC)' and (MiCr) for each T > 0. If the coefficients b

and c are as specified by (5.6) and (5.7), then the McKean-Vlasov equation

(5.3) has a unique strong solution in C d'

c) Assume the conditions in part (b). Further, assume that there exists 5>0

suc tat lln 4+6EIIXI(O)II C where C is independent of n. Then, in the notation
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of section 6

Tn => 6 in r(r(C Rd )

0

The above result enables us to compare our results with those of Sznitman [16].

The conditions made by Sznitman are the following:

(i) The initial random variables Xn(O).... X (O) are d-valued exchangeable

random variables and are bounded.

n a fnn d On
(ii) 0 = law of (X,(O),...,X n(O)) on (IR are o -chaotic, where ji is a

probability measure on IRd

(iii) The drift and diffusion coefficients are uniformly bounded and satisfy

uniform Lipschitz conditions in the space and time variables.

(iv) The covariance form Q is the identity matrix.

In the next paragraph the conditions (i) through (iv) are compared with those

that appear in Theorem 8.2.1.

First (SIC) and the moment condition introduced in part (c) of Theorem

8.2.1 are satisfied since (i) says that the initial variables are bounded.

(SOC) is verified as follows:

For u,v E RdR, O~t T. and h(t,u,v) = a(t,u) + c(t.u,v),

12a(t,u)-u + 2b(t,uv)-u + tr(hh (tu,v))f

211allliull + 211bllIlull + trace(hh7(t,u,v))

S0( l+lull 2 )

by using the uniform boundedness of the coefficients and condition (iv).

The verifications of (SLO) and (SJC) given the Conditions (i) to (iv) are
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simple and hence left to the reader. (SMC) can be verified by using Lipschitz

continuity of the coefficients. (SJC) and (MCr) are obtained by continuity and

boundedness of the coefficients. Thus, our set of conditions for the

propagation of chaos is weaker than that imposed in the finite-dimensional

set-up by Sznitman [16]. The finite-dimensional result of Leonard [11] is

close in spirit to Theorem 8.2.1 and hence, a comparison of the two is left to

the reader.
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